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2 Chapter 1. Getting Started



CHAPTER
TWO

MATHEMATICAL BACKGROUND

[WEFC+17], [BK16]...

2.1 The Pair Paradigm

Item pairs are at the center of [MCCD13] and its derivatives. Instead of processing a whole sequence, only two items
are considered at a single step. This section discusses how to select them and what they represent.

2.1.1 Input-Output

The most straightforward way to define an item pair is in the supervised case. The left-hand side is the input (a.k.a.
feature item) and the right-hand side is the output (a.k.a. label item).

2.1.2 Skip-Gram

2.2 Why Negative Sampling?

2.2.1 Softmax Formulation
Let (a, b) a pair of items, where a € A is the source and b € B the target. The actual meaning depends on the use case,
as discussed above.

The conditional probability of observing b given a is defined by a softmax on all possibilities, as it is a regular multi-
class task:

T
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P(bla;u,V)ZW
e

The log-likelihood is therefore defined as:
L(a,bu,v) = —log P(b] a;u,v) = —ulvy +log Y eV
b/

0
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However, this implies a summation over every b’ € B, which is computationally expensive for large vocabularies.
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2.2.2 Noise Contrastive Estimation Formulation

Noise Contrastive Estimation (Gutmann and Hyvirinen [GH10]) is proposed by Mnih and Teh [MT12] as a stable
sampling method, to reduce the cost induced by softmax computation. In a nutshell, the model is trained to distinguish
observed (positive) samples from random noise. Logistic regression is applied to minimize the negative log-likelihood,
i.e. cross-entropy of our training example against the k£ noise samples:

L(a,b) = —logP(y=1]a,b) + kEp.g[—log P(y =0 a,b)]

To avoid computating the expectation on the whole vocabulary, a Monte Carlo approximation is applied. B* C B,
with | B*| = k, is therefore the set of random samples used to estimate it:

L(a,b) =—logP(y=1]a,b)—k Z log P(y=0]a,b)
b'€B*CB
We are effectively generating samples from two different distributions: positive pairs are sampled from the empirical
training set, while negative pairs come from the noise distribution Q.

P(yb|a) = ——P(b|a) + —— Q)

k+1 k+1
Hence, the probability that a sample came from the training distribution:
P
Ply=1]ab) = 5ot 1%

P(b]a)+kQ(b)
However, P(b | a) is still defined as a softmax:
T
ella Vp
Zb’ eul vy

Both Mnih and Teh [MT12] and Vaswani et al. [VZFC13] arbitrarily set the denominator to 1. The underlying idea
is that, instead of explicitly computing this value, it could be defined as a trainable parameter. Zoph et al. [ZVMK16]
actually report that even when trained, it stays close to 1 with a low variance.

P |a;u,v) =

Hence:
P |aju,v) = et Ve
The negative log-likelihood can then be computed as usual:
L(a,b;u,v) = —log P(a,b;u,v)

Mnih and Teh [MT12] report that using & = 25 is sufficient to match the performance of the regular softmax.

2.2.3 Negative Sampling Formulation

Negative Sampling, popularised by Mikolov et al. [MSC+13], can be seen as an approximation of NCE. As defined
previously, NCE is based on the following:
equb

e"ave + kQ(b)

Negative Sampling simplifies this computation by replacing £Q(b) by 1. Note that kQ(b) = 1 is true when B* = B
and @ is the uniform distribution.

Ply=1[a,b;u,v) =

equb T
P(y: 1 | a,b;u7v) = m :U(uaVb)
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Hence:

P(a,b;u,v) = o (ulv,) H (1—0o(ulvy))

b eB*CB

L(a,b;u,v) = —logo (ulvy) — Z log (1 -0 (ulvy))
beB*CB

For more details, see Goldberg and Levy’s notes [GL14].
2.2.4 Gradient Computation

In order to apply gradient descent, partial derivatives must be computed. As this is a sum, let us identify the two main
terms:

Biua —logo (ufvb) = — S (aTvs) vy
(O’ (u?;vb) — 1) Vp
—0 T ’ —0 r ’
= lo (L= (ufwy)) = Lol

g (ufvb/) Vyr

As both terms are similar, we can rewrite them using the associated label y:
T
lapy = (o (uzve) —y) vy
Therefore, the overall gradient is:

0
—L(a,b;u,v) =Ly p1 + Z Lap 0

ou
@ b’ eB*CB

A similar expansion can be done for (9i£(a7 b;u, v).
Vb

2.3 Additional Considerations

2.3.1 Normalization
By setting the denominator to 1, as proposed above, the model essentially learns to self-normalize. However, Devlin
et al. [DZH+14] suggest to add a squared error penalty to enforce the equivalence. Andreas and Klein [AK15] even

suggest that it should even be sufficient to only normalize a fraction of the training examples and still obtain approximate
self-normalising behaviour.

2.3.2 Item distribution balancing

In word2vec, Mikolov et al. [MSC+13] use a subsampling approach to reduce the impact of frequent words. Each word
has a probability

of being discarded, where f(w;) is its frequency and ¢ a chosen threshold, typically around 10~5.

2.3. Additional Considerations 5
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2.4 References
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CHAPTER
THREE

DEVELOPER INTERFACE

This part of the documentation covers the public interface of itembed.

3.1 Preprocessing Tools

A few helpers are provided to clean the data and convert to the expected format.

itembed.index_batch_stream(num_index, batch_size)
Indices generator.

itembed.pack_itemsets (ifemsets, *, min_count=1, min_length=1)
Convert itemset collection to packed indices.

Parameters
* itemsets (1ist of list of object) — List of sets of hashable objects.
* min_count (int, optional)- Minimal frequency count to be kept.
* min_length (int, optional)- Minimal itemset length.
Returns
* labels (list of object) — Mapping from indices to labels.
* indices (int32, num_item) — Packed index array.

o offsets (int32, num_itemset + 1) — Itemsets offsets in packed array.

Example

>>> itemsets = [

["apple"],
["apple", "sugar", "flour"],
["pear", "sugar", "flour", "butter"],
["apple", "pear", "sugar", "butter", "cinnamon"],
.. ["salt", "flour", "oil"],
-]
>>> pack_itemsets(itemsets, min_length=2)
(['apple', 'sugar', 'flour', 'pear', 'butter', 'cinnamon', 'salt', 'oil'],

array([®, 1, 2, 3, 1, 2, 4, 0, 3, 1, 4, 5, 6, 2, 7]),
array([ ©®, 3, 7, 12, 15]))




itembed, Release 0.5.0

itembed.prune_itemsets (indices, offsets, *, mask=None, min_length=None)
Filter packed indices.

Either an explicit mask or a length threshold must be defined.

Parameters
» indices (int32, num_item) - Packed index array.
» offsets (int32, num_itemset + 1)- Itemsets offsets in packed array.
e mask (bool, num_itemset)— Boolean mask.
* min_length (int) — Minimum length, inclusive.

Returns
* indices (int32, num_item) — Packed index array.

o offsets (int32, num_itemset + 1) — Itemsets offsets in packed array.

Example

>>> indices = np.array([0, O, 1, O, 1, 2, 0, 1, 2, 3D

>>> offsets = np.array([0, 1, 3, 6, 10])

>>> mask = np.array([True, True, False, True])

>>> prune_itemsets(indices, offsets, mask=mask, min_length=2)
(array([®, 1, O, 1, 2, 31), array([0®, 2, 61))

3.2 Tasks

Tasks are high-level building blocks used to define an optimization problem.

class itembed.Task(learning_rate_scale)
Abstract training task.

do_batch(learning_rate)
Apply training step.

class itembed.UnsupervisedTask (items, offsets, syn0, synl, *, weights=None, num_negative=>5,
learning_rate_scale=1.0, batch_size=64)
Unsupervised training task.

See also:

do_unsupervised_steps()

Parameters
e items (int32, num_item) - Itemsets, concatenated.
» offsets (int32, num_itemset + 1)- Boundaries in packed items.
e indices (int32, num_step) — Subset of offsets to consider.

e syn® (float32, num_label x num_dimension) — First set of embeddings.

synl (float32, num_label x num_dimension) — Second set of embeddings.

weights (float32, num_item, optional) - Item weights, concatenated.

8 Chapter 3. Developer Interface
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* num_negative (int32, optional)- Number of negative samples.
* learning_rate_scale (float32, optional)— Learning rate multiplier.
e batch_size (int32, optional) - Batch size.
do_batch(learning_rate)
Apply training step.

class itembed.SupervisedTask (left_items, left_offsets, right_items, right_offsets, left_syn, right_syn, *,
left_weights=None, right_weights=None, num_negative=>5,
learning_rate_scale=1.0, batch_size=64)
Supervised training task.

See also:

do_supervised_steps()

Parameters
e left_items (int32, num_left_item) — Itemsets, concatenated.
* left_offsets (int32, num_itemset + 1)- Boundaries in packed items.
e right_items (int32, num_right_item) — Itemsets, concatenated.
» right_offsets (int32, num_itemset + 1) - Boundaries in packed items.
e left_syn (float32, num_left_label x num_dimension)— Feature embeddings.
e right_syn (float32, num_right_label x num_dimension) — Label embeddings.
* left_weights (float32, num_left_item, optional) - Item weights, concatenated.

e right_weights (float32, num_right_item, optional) — Item weights, concate-
nated.

* num_negative (int32, optional) - Number of negative samples.
* learning_rate_scale (float32, optional) - Learning rate multiplier.
e batch_size (int32, optional) - Batch size.
do_batch(learning_rate)
Apply training step.

class itembed.CompoundTask (*fasks, learning_rate_scale=1.0)
Group multiple sub-tasks together.

Parameters
» *tasks (list of Task)— Collection of tasks to train jointly.
* learning_rate_scale (float32, optional) - Learning rate multiplier.

do_batch(learning_rate)
Apply training step.

3.2. Tasks 9
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3.3 Training Tools

Embeddings initialization and training loop helpers:

itembed.initialize_syn(num_label, num_dimension, method="uniform")
Allocate and initialize embedding set.

Parameters

e num_label (int32) — Number of labels.

* num_dimension (int32) - Size of embeddings.

e method ({"uniform", "zero"}, optional) - Initialization method.
Returns syn — Embedding set.
Return type float32, num_label x num_dimension

itembed.train(task, *, num_epoch=10, initial_learning_rate=0.025, final_learning_rate=0.0)
Train loop.

Learning rate decreases linearly, down to zero.
Keyboard interruptions are silently captured, which interrupt the training process.
A progress bar is shown, using tqdm.
Parameters
* task (Task) — Top-level task to train.
* num_epoch (int) — Number of passes across the whole task.
e initial_learning_rate (float)— Maximum learning rate (inclusive).

e final learning_rate (float)— Minimum learning rate (exclusive).

3.4 Postprocessing Tools

Once embeddings are trained, some methods are provided to normalize and use them.

itembed.softmax (x)
Compute softmax.

itembed.norm(x)
L, norm.

itembed.normalize(x)
L, normalization.

10 Chapter 3. Developer Interface
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3.5 Low-Level Optimization Methods

At its core, itembed is a set of optimized methods.

itembed.expit(x)
Compute logistic activation.

itembed.do_step (left, right, syn_left, syn_right, tmp_syn, num_negative, learning_rate)
Apply a single training step.

Parameters
e left (int32) — Left-hand item.
» right (int32) — Right-hand item.
» syn_left (float32, num_left x num_dimension) - Left-hand embeddings.
» syn_right (float32, num_right x num_dimension)— Right-hand embeddings.

* tmp_syn (float32, num_dimension) — Internal buffer (allocated only once, for perfor-
mance).

* num_negative (int32) — Number of negative samples.
* learning_rate (float32) — Learning rate.

itembed.do_supervised_steps (left_itemset, right_itemset, left_weights, right_weights, left_syn, right_syn,
tmp_syn, num_negative, learning_rate)
Apply steps from two itemsets.

This is used in a supervised setting, where left-hand items are features and right-hand items are labels.
Parameters
e left_itemset (int32, left_length) — Feature items.
e right_itemset (int32, right_length) - Label items.
» left_weights (float32, left_length) — Feature item weights.
e right_weights (float32, right_length) - Label item weights.
» left_syn (float32, num_left_label x num_dimension) — Feature embeddings.
e right_syn (float32, num_right_label x num_dimension) — Label embeddings.

e tmp_syn (float32, num_dimension) — Internal buffer (allocated only once, for perfor-
mance).

* num_negative (int32) — Number of negative samples.
* learning_rate (float32) — Learning rate.

itembed.do_unsupervised_steps (itemset, weights, syn0, synl, tmp_syn, num_negative, learning_rate)
Apply steps from a single itemset.

This is used in an unsupervised setting, where co-occurrence is used as a knowledge source. It follows the
skip-gram method, as introduced by Mikolov et al.

For each item, a single random neighbor is sampled to define a pair. This means that only a subset of possible
pairs is considered. The reason is twofold: training stays in linear complexity w.r.t. itemset lengths and large
itemsets do not dominate smaller ones.

Itemset must have at least 2 items. Length is not checked, for efficiency.

Parameters

3.5. Low-Level Optimization Methods 11
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e itemset (int32, length) - Items.

» weights (float32, length) - Item weights.

* syn0® (float32, num_label x num_dimension) — First set of embeddings.

* synl (float32, num_label x num_dimension)— Second set of embeddings.

* tmp_syn (float32, num_dimension) — Internal buffer (allocated only once, for perfor-
mance).

* num_negative (int32) — Number of negative samples.
* learning_rate (float32) — Learning rate.

itembed.do_supervised_batch(left_items, left_weights, left_offsets, left_indices, right_items, right_weights,
right_offsets, right_indices, left_syn, right_syn, tmp_syn, num_negative,
learning_rate)
Apply supervised steps from multiple itemsets.

See also:

do_supervised_steps()

Parameters
e left_items (int32, num_left_item) — Itemsets, concatenated.
* left_weights (float32, num_left_item)— Item weights, concatenated.
o left_offsets (int32, num_itemset + 1)- Boundaries in packed items.
* left_indices (int32, num_step)— Subset of offsets to consider.
e right_items (int32, num_right_item) — Itemsets, concatenated.
* right_weights (float32, num_right_item) - Item weights, concatenated.
» right_offsets (int32, num_itemset + 1)— Boundaries in packed items.
e right_indices (int32, num_step)— Subset of offsets to consider.
o left_syn (float32, num_left_label x num_dimension)— Feature embeddings.
e right_syn (float32, num_right_label x num_dimension) — Label embeddings.

e tmp_syn (float32, num_dimension) — Internal buffer (allocated only once, for perfor-
mance).

e num_negative (int32) — Number of negative samples.
* learning_rate (float32) — Learning rate.
itembed.do_unsupervised_batch(items, weights, offsets, indices, syn0, synl, tmp_syn, num_negative,

learning_rate)
Apply unsupervised steps from multiple itemsets.

See also:

do_unsupervised_steps()

Parameters
e items (int32, num_item) — Itemsets, concatenated.

» weights (float32, num_item)— Item weights, concatenated.

12 Chapter 3. Developer Interface



itembed, Release 0.5.0

» offsets (int32, num_itemset + 1)-Boundaries in packed items.

e indices (int32, num_step) — Subset of offsets to consider.

e syn® (float32, num_label x num_dimension) — First set of embeddings.

* synl (float32, num_label x num_dimension)— Second set of embeddings.

* tmp_syn (float32, num_dimension) — Internal buffer (allocated only once, for perfor-
mance).

* num_negative (int32) — Number of negative samples.

* learning_rate (float32) — Learning rate.

3.5. Low-Level Optimization Methods 13
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