itembed

Release 0.5.0

Johan Berdat

CONTENTS

1 Getting Started						
2	Mathematical Background					
	2.1	The Pair Paradigm	3			
	2.2	Why Negative Sampling?	3			
	2.3	Additional Considerations	5			
	2.4	References	6			
3	Deve	eloper Interface	7			
	3.1	Preprocessing Tools	7			
	3.2	Tasks	8			
	3.3	Training Tools	10			
	3.4	Postprocessing Tools	10			
	3.5	Low-Level Optimization Methods	11			
Bi	bliogr	raphy	15			
Ру	thon	Module Index	17			
In	dex		19			

CHAP	ΓER
OI	NE

GETTING STARTED

...

CHAPTER

TWO

MATHEMATICAL BACKGROUND

[WFC+17], [BK16]...

2.1 The Pair Paradigm

Item pairs are at the center of [MCCD13] and its derivatives. Instead of processing a whole sequence, only two items are considered at a single step. This section discusses how to select them and what they represent.

2.1.1 Input-Output

The most straightforward way to define an item pair is in the supervised case. The left-hand side is the input (a.k.a. feature item) and the right-hand side is the output (a.k.a. label item).

. .

2.1.2 Skip-Gram

. . .

2.2 Why Negative Sampling?

2.2.1 Softmax Formulation

Let (a, b) a pair of items, where $a \in A$ is the source and $b \in B$ the target. The actual meaning depends on the use case, as discussed above.

The conditional probability of observing b given a is defined by a softmax on all possibilities, as it is a regular multiclass task:

$$P(b \mid a; \mathbf{u}, \mathbf{v}) = \frac{e^{\mathbf{u}_a^T \mathbf{v}_b}}{\sum_{b'} e^{\mathbf{u}_a^T \mathbf{v}_{b'}}}$$

The log-likelihood is therefore defined as:

$$\mathcal{L}(a, b; \mathbf{u}, \mathbf{v}) = -\log P(b \mid a; \mathbf{u}, \mathbf{v}) = -\mathbf{u}_a^T \mathbf{v}_b + \log \sum_{b'} e^{\mathbf{u}_a^T \mathbf{v}_{b'}}$$
$$\frac{\partial}{\partial \mathbf{u}_a} \mathcal{L}(a, b; \mathbf{u}, \mathbf{v}) = -\mathbf{v}_b + \sum_{b'} P(b' \mid a; \mathbf{u}, \mathbf{v}) \mathbf{v}_{b'}$$

However, this implies a summation over every $b' \in B$, which is computationally expensive for large vocabularies.

2.2.2 Noise Contrastive Estimation Formulation

Noise Contrastive Estimation (Gutmann and Hyvärinen [GH10]) is proposed by Mnih and Teh [MT12] as a stable sampling method, to reduce the cost induced by softmax computation. In a nutshell, the model is trained to distinguish observed (positive) samples from random noise. Logistic regression is applied to minimize the negative log-likelihood, i.e. cross-entropy of our training example against the k noise samples:

$$\mathcal{L}(a,b) = -\log P(y = 1 \mid a,b) + k\mathbb{E}_{b' \sim Q} \left[-\log P(y = 0 \mid a,b) \right]$$

To avoid computating the expectation on the whole vocabulary, a Monte Carlo approximation is applied. $B^* \subseteq B$, with $|B^*| = k$, is therefore the set of random samples used to estimate it:

$$\mathcal{L}(a,b) = -\log P(y = 1 \mid a,b) - k \sum_{b' \in B^* \subset B} \log P(y = 0 \mid a,b')$$

We are effectively generating samples from two different distributions: positive pairs are sampled from the empirical training set, while negative pairs come from the noise distribution Q.

$$P(y, b \mid a) = \frac{1}{k+1} P(b \mid a) + \frac{k}{k+1} Q(b)$$

Hence, the probability that a sample came from the training distribution:

$$P(y = 1 \mid a, b) = \frac{P(b \mid a)}{P(b \mid a) + kQ(b)}$$

$$P(y = 0 \mid a, b) = 1 - P(y = 1 \mid a, b)$$

However, $P(b \mid a)$ is still defined as a softmax:

$$P(b \mid a; \mathbf{u}, \mathbf{v}) = \frac{e^{\mathbf{u}_a^T \mathbf{v}_b}}{\sum_{b'} e^{\mathbf{u}_a^T \mathbf{v}_{b'}}}$$

Both Mnih and Teh [MT12] and Vaswani et al. [VZFC13] arbitrarily set the denominator to 1. The underlying idea is that, instead of explicitly computing this value, it could be defined as a trainable parameter. Zoph et al. [ZVMK16] actually report that even when trained, it stays close to 1 with a low variance.

Hence:

$$P(b \mid a; \mathbf{u}, \mathbf{v}) = e^{\mathbf{u}_a^T \mathbf{v}_b}$$

The negative log-likelihood can then be computed as usual:

$$\mathcal{L}(a, b; \mathbf{u}, \mathbf{v}) = -\log P(a, b; \mathbf{u}, \mathbf{v})$$

Mnih and Teh [MT12] report that using k=25 is sufficient to match the performance of the regular softmax.

2.2.3 Negative Sampling Formulation

Negative Sampling, popularised by Mikolov et al. [MSC+13], can be seen as an approximation of NCE. As defined previously, NCE is based on the following:

$$P(y = 1 \mid a, b; \mathbf{u}, \mathbf{v}) = \frac{e^{\mathbf{u}_a^T \mathbf{v}_b}}{e^{\mathbf{u}_a^T \mathbf{v}_b} + kQ(b)}$$

Negative Sampling simplifies this computation by replacing kQ(b) by 1. Note that kQ(b) = 1 is true when $B^* = B$ and Q is the uniform distribution.

$$P(y = 1 \mid a, b; \mathbf{u}, \mathbf{v}) = \frac{e^{\mathbf{u}_a^T \mathbf{v}_b}}{e^{\mathbf{u}_a^T \mathbf{v}_b} + 1} = \sigma \left(\mathbf{u}_a^T \mathbf{v}_b \right)$$

Hence:

$$P(a, b; \mathbf{u}, \mathbf{v}) = \sigma \left(\mathbf{u}_a^T \mathbf{v}_b \right) \prod_{b' \in B^* \subseteq B} \left(1 - \sigma \left(\mathbf{u}_a^T \mathbf{v}_{b'} \right) \right)$$

$$\mathcal{L}(a, b; \mathbf{u}, \mathbf{v}) = -\log \sigma \left(\mathbf{u}_a^T \mathbf{v}_b \right) - \sum_{b' \in B^* \subseteq B} \log \left(1 - \sigma \left(\mathbf{u}_a^T \mathbf{v}_{b'} \right) \right)$$

For more details, see Goldberg and Levy's notes [GL14].

2.2.4 Gradient Computation

In order to apply gradient descent, partial derivatives must be computed. As this is a sum, let us identify the two main terms:

$$\frac{\partial}{\partial \mathbf{u}_{a}} - \log \sigma \left(\mathbf{u}_{a}^{T} \mathbf{v}_{b} \right) = -\frac{\sigma \left(\mathbf{u}_{a}^{T} \mathbf{v}_{b} \right) \left(1 - \sigma \left(\mathbf{u}_{a}^{T} \mathbf{v}_{b} \right) \right)}{\sigma \left(\mathbf{u}_{a}^{T} \mathbf{v}_{b} \right)} \mathbf{v}_{b}
= \left(\sigma \left(\mathbf{u}_{a}^{T} \mathbf{v}_{b} \right) - 1 \right) \mathbf{v}_{b}$$

$$\frac{\partial}{\partial \mathbf{u}_{a}} - \log \left(1 - \sigma \left(\mathbf{u}_{a}^{T} \mathbf{v}_{b'} \right) \right) = -\frac{\sigma \left(\mathbf{u}_{a}^{T} \mathbf{v}_{b'} \right) \left(1 - \sigma \left(\mathbf{u}_{a}^{T} \mathbf{v}_{b'} \right) \right)}{1 - \sigma \left(\mathbf{u}_{a}^{T} \mathbf{v}_{b'} \right)} \mathbf{v}_{b'}$$

$$= \sigma \left(\mathbf{u}_{a}^{T} \mathbf{v}_{b'} \right) \mathbf{v}_{b'}$$

As both terms are similar, we can rewrite them using the associated label y:

$$\ell_{a,b,y} = \left(\sigma\left(\mathbf{u}_a^T \mathbf{v}_b\right) - y\right) \mathbf{v}_b$$

Therefore, the overall gradient is:

$$\frac{\partial}{\partial \mathbf{u}_a} \mathcal{L}(a, b; \mathbf{u}, \mathbf{v}) = \ell_{a, b, 1} + \sum_{b' \in B^* \subseteq B} \ell_{a, b', 0}$$

A similar expansion can be done for $\frac{\partial}{\partial \mathbf{v}_b} \mathcal{L}(a,b;\mathbf{u},\mathbf{v})$.

2.3 Additional Considerations

2.3.1 Normalization

By setting the denominator to 1, as proposed above, the model essentially learns to self-normalize. However, Devlin et al. [DZH+14] suggest to add a squared error penalty to enforce the equivalence. Andreas and Klein [AK15] even suggest that it should even be sufficient to only normalize a fraction of the training examples and still obtain approximate self-normalising behaviour.

2.3.2 Item distribution balancing

In word2vec, Mikolov et al. [MSC+13] use a subsampling approach to reduce the impact of frequent words. Each word has a probability

$$P(w_i) = 1 - \sqrt{\left(\frac{t}{f(w_i)}\right)}$$

of being discarded, where $f(w_i)$ is its frequency and t a chosen threshold, typically around 10^{-5} .

2.4 References

DEVELOPER INTERFACE

This part of the documentation covers the public interface of itembed.

3.1 Preprocessing Tools

A few helpers are provided to clean the data and convert to the expected format.

```
itembed.index_batch_stream(num_index, batch_size)
Indices generator.
```

itembed.pack_itemsets(itemsets, *, min_count=1, min_length=1)

Convert itemset collection to packed indices.

Parameters

- itemsets (list of list of object) List of sets of hashable objects.
- min_count (int, optional) Minimal frequency count to be kept.
- min_length (int, optional) Minimal itemset length.

Returns

- labels (list of object) Mapping from indices to labels.
- indices (int32, num_item) Packed index array.
- offsets (int32, $num_itemset + 1$) Itemsets offsets in packed array.

Example

itembed.prune_itemsets(indices, offsets, *, mask=None, min_length=None) Filter packed indices.

Either an explicit mask or a length threshold must be defined.

Parameters

- indices (int32, num_item) Packed index array.
- **offsets** (*int32*, *num_itemset* + 1) Itemsets offsets in packed array.
- mask (bool, num_itemset) Boolean mask.
- min_length (int) Minimum length, inclusive.

Returns

- indices (int32, num_item) Packed index array.
- offsets (int32, $num_itemset + 1$) Itemsets offsets in packed array.

Example

```
>>> indices = np.array([0, 0, 1, 0, 1, 2, 0, 1, 2, 3])
>>> offsets = np.array([0, 1, 3, 6, 10])
>>> mask = np.array([True, True, False, True])
>>> prune_itemsets(indices, offsets, mask=mask, min_length=2)
(array([0, 1, 0, 1, 2, 3]), array([0, 2, 6]))
```

3.2 Tasks

Tasks are high-level building blocks used to define an optimization problem.

```
class itembed.Task(learning_rate_scale)
```

Abstract training task.

do_batch(learning_rate)

Apply training step.

Unsupervised training task.

See also:

do_unsupervised_steps()

Parameters

- items (int32, num_item) Itemsets, concatenated.
- offsets (int32, num_itemset + 1) Boundaries in packed items.
- indices (int32, num_step) Subset of offsets to consider.
- **syn0** (*float32*, num_label x num_dimension) First set of embeddings.
- syn1 (float32, num_label x num_dimension) Second set of embeddings.
- weights (float32, num_item, optional) Item weights, concatenated.

- num_negative (int32, optional) Number of negative samples.
- **learning_rate_scale** (*float32*, *optional*) Learning rate multiplier.
- batch_size (int32, optional) Batch size.

do_batch(learning_rate)

Apply training step.

Supervised training task.

See also:

do_supervised_steps()

Parameters

- **left_items** (*int32*, *num_left_item*) Itemsets, concatenated.
- **left_offsets** (*int32*, *num_itemset* + 1) Boundaries in packed items.
- right_items (int32, num_right_item) Itemsets, concatenated.
- right_offsets (int32, num_itemset + 1) Boundaries in packed items.
- **left_syn** (*float32*, *num_left_label* x *num_dimension*) Feature embeddings.
- right_syn (float32, num_right_label x num_dimension) Label embeddings.
- left_weights (float32, num_left_item, optional) Item weights, concatenated.
- right_weights (float32, num_right_item, optional) Item weights, concatenated.
- num_negative (int32, optional) Number of negative samples.
- learning_rate_scale (float32, optional) Learning rate multiplier.
- batch_size (int32, optional) Batch size.

do_batch(learning_rate)

Apply training step.

class itembed.CompoundTask(*tasks, learning_rate_scale=1.0)

Group multiple sub-tasks together.

Parameters

- *tasks (list of Task) Collection of tasks to train jointly.
- **learning_rate_scale** (*float32*, *optional*) Learning rate multiplier.

do_batch(learning_rate)

Apply training step.

3.2. Tasks 9

3.3 Training Tools

Embeddings initialization and training loop helpers:

```
itembed.initialize_syn(num_label, num_dimension, method='uniform')
Allocate and initialize embedding set.
```

Parameters

- num_label (int32) Number of labels.
- num_dimension (int32) Size of embeddings.
- method ({"uniform", "zero"}, optional) Initialization method.

Returns syn – Embedding set.

Return type float32, num_label x num_dimension

itembed.train(task, *, num_epoch=10, initial_learning_rate=0.025, final_learning_rate=0.0)
Train loop.

Learning rate decreases linearly, down to zero.

Keyboard interruptions are silently captured, which interrupt the training process.

A progress bar is shown, using tqdm.

Parameters

- task (Task) Top-level task to train.
- **num_epoch** (*int*) Number of passes across the whole task.
- initial_learning_rate (float) Maximum learning rate (inclusive).
- **final_learning_rate** (*float*) Minimum learning rate (exclusive).

3.4 Postprocessing Tools

Once embeddings are trained, some methods are provided to normalize and use them.

```
itembed.softmax(x)
```

Compute softmax.

itembed.norm(x)

L₂ norm.

itembed.normalize(x)

L₂ normalization.

3.5 Low-Level Optimization Methods

At its core, itembed is a set of optimized methods.

itembed.expit(x)

Compute logistic activation.

itembed.do_step(left, right, syn_left, syn_right, tmp_syn, num_negative, learning_rate)
Apply a single training step.

Parameters

- **left** (*int32*) Left-hand item.
- right (int 32) Right-hand item.
- **syn_left** (*float32*, *num_left* x *num_dimension*) Left-hand embeddings.
- **syn_right** (*float32*, *num_right* x *num_dimension*) Right-hand embeddings.
- tmp_syn (float32, num_dimension) Internal buffer (allocated only once, for performance).
- **num_negative** (*int32*) Number of negative samples.
- learning_rate (float 32) Learning rate.

Apply steps from two itemsets.

This is used in a supervised setting, where left-hand items are features and right-hand items are labels.

Parameters

- **left_itemset** (*int32*, *left_length*) Feature items.
- right_itemset (int32, right_length) Label items.
- **left_weights** (*float32*, *left_length*) Feature item weights.
- right_weights (float32, right_length) Label item weights.
- **left_syn** (float32, num_left_label x num_dimension) Feature embeddings.
- $\bullet \ \ right_syn \ (\textit{float32}, \ \ num_right_label \ \ x \ \ num_dimension) Label \ embeddings.$
- tmp_syn (float32, num_dimension) Internal buffer (allocated only once, for performance).
- **num_negative** (*int32*) Number of negative samples.
- learning_rate (float 32) Learning rate.

itembed.do_unsupervised_steps(itemset, weights, syn0, syn1, tmp_syn, num_negative, learning_rate)
Apply steps from a single itemset.

This is used in an unsupervised setting, where co-occurrence is used as a knowledge source. It follows the skip-gram method, as introduced by Mikolov et al.

For each item, a single random neighbor is sampled to define a pair. This means that only a subset of possible pairs is considered. The reason is twofold: training stays in linear complexity w.r.t. itemset lengths and large itemsets do not dominate smaller ones.

Itemset must have at least 2 items. Length is not checked, for efficiency.

Parameters

- itemset (int32, length) Items.
- weights (float32, length) Item weights.
- syn0 (float32, num_label x num_dimension) First set of embeddings.
- syn1 (float32, num_label x num_dimension) Second set of embeddings.
- tmp_syn (float32, num_dimension) Internal buffer (allocated only once, for performance).
- **num_negative** (*int32*) Number of negative samples.
- learning_rate (float32) Learning rate.

Apply supervised steps from multiple itemsets.

See also:

do_supervised_steps()

Parameters

- **left_items** (*int32*, *num_left_item*) Itemsets, concatenated.
- **left_weights** (*float32*, *num_left_item*) Item weights, concatenated.
- left_offsets (int32, num_itemset + 1) Boundaries in packed items.
- left_indices (int32, num_step) Subset of offsets to consider.
- right_items (int32, num_right_item) Itemsets, concatenated.
- right_weights (float32, num_right_item) Item weights, concatenated.
- right_offsets (int32, num_itemset + 1) Boundaries in packed items.
- right_indices (int32, num_step) Subset of offsets to consider.
- **left_syn** (*float32*, *num_left_label* x *num_dimension*) Feature embeddings.
- right_syn (float32, num_right_label x num_dimension) Label embeddings.
- tmp_syn (float32, num_dimension) Internal buffer (allocated only once, for performance).
- **num_negative** (*int32*) Number of negative samples.
- **learning_rate** (*float32*) Learning rate.

Apply unsupervised steps from multiple itemsets.

See also:

do_unsupervised_steps()

Parameters

- items (int32, num_item) Itemsets, concatenated.
- weights (float32, num_item) Item weights, concatenated.

- offsets (int32, num_itemset + 1) Boundaries in packed items.
- indices (int32, num_step) Subset of offsets to consider.
- **syn0** (float32, num_label x num_dimension) First set of embeddings.
- **syn1** (*float32*, num_label x num_dimension) Second set of embeddings.
- tmp_syn (float32, num_dimension) Internal buffer (allocated only once, for performance).
- **num_negative** (*int32*) Number of negative samples.
- learning_rate (float 32) Learning rate.

BIBLIOGRAPHY

- [AK15] Jacob Andreas and Dan Klein. When and why are log-linear models self-normalizing? In Rada Mihalcea, Joyce Yue Chai, and Anoop Sarkar, editors, *HLT-NAACL*, 244–249. The Association for Computational Linguistics, 2015. URL: http://dblp.uni-trier.de/db/conf/naacl/naacl2015.html#AndreasK15.
- [BK16] Oren Barkan and Noam Koenigstein. Item2vec: neural item embedding for collaborative filtering. 2016. cite arxiv:1603.04259. URL: http://arxiv.org/abs/1603.04259.
- [DZH+14] Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas Lamar, Richard Schwartz, and John Makhoul. Fast and robust neural network joint models for statistical machine translation. In *Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, 1370–1380. Baltimore, Maryland, June 2014. Association for Computational Linguistics. URL: http://www.aclweb.org/anthology/P14-1129.
- [GL14] Yoav Goldberg and Omer Levy. Word2vec explained: deriving mikolov et al.'s negative-sampling word-embedding method. 2014. cite arxiv:1402.3722. URL: http://arxiv.org/abs/1402.3722.
- [GH10] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: a new estimation principle for unnormalized statistical models. In Yee Whye Teh and D. Mike Titterington, editors, *AISTATS*, volume 9 of JMLR Proceedings, 297–304. JMLR.org, 2010. URL: http://dblp.uni-trier.de/db/journals/jmlr/jmlrp9. html#GutmannH10.
- [MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. *CoRR*, 2013. URL: http://dblp.uni-trier.de/db/journals/corr/corr1301.html#abs-1301-3781.
- [MSC+13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of words and phrases and their compositionality. In C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, *Advances in Neural Information Processing Systems* 26, pages 3111–3119. 2013. URL: http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.
- [MT12] Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training neural probabilistic language models. In *ICML*. icml.cc / Omnipress, 2012. URL: http://dblp.uni-trier.de/db/conf/icml/icml2012.html# MnihT12.
- [VZFC13] Ashish Vaswani, Yinggong Zhao, Victoria Fossum, and David Chiang. Decoding with large-scale neural language models improves translation. In *EMNLP*, 1387–1392. ACL, 2013. URL: http://dblp.uni-trier.de/db/conf/emnlp/emnlp2013.html#VaswaniZFC13.
- [WFC+17] Ledell Wu, Adam Fisch, Sumit Chopra, Keith Adams, Antoine Bordes, and Jason Weston. Starspace: embed all the things! 2017. cite arxiv:1709.03856. URL: http://arxiv.org/abs/1709.03856.
- [ZVMK16] Barret Zoph, Ashish Vaswani, Jonathan May, and Kevin Knight. Simple, fast noise-contrastive estimation for large rnn vocabularies. In Kevin Knight, Ani Nenkova, and Owen Rambow, editors, *HLT-NAACL*, 1217–1222. The Association for Computational Linguistics, 2016. URL: http://dblp.uni-trier.de/db/conf/naacl/naacl2016.html#ZophVMK16.

16 Bibliography

PYTHON MODULE INDEX

i

itembed, 7

18 Python Module Index

INDEX

```
C
                                                     train() (in module itembed), 10
CompoundTask (class in itembed), 9
                                                     U
D
                                                     UnsupervisedTask (class in itembed), 8
do_batch() (itembed.CompoundTask method), 9
do_batch() (itembed.SupervisedTask method), 9
do_batch() (itembed.Task method), 8
do_batch() (itembed.UnsupervisedTask method), 9
do_step() (in module itembed), 11
do_supervised_batch() (in module itembed), 12
do_supervised_steps() (in module itembed), 11
do_unsupervised_batch() (in module itembed), 12
do_unsupervised_steps() (in module itembed), 11
Ε
expit() (in module itembed), 11
index_batch_stream() (in module itembed), 7
initialize_syn() (in module itembed), 10
itembed
    module, 7
M
module
    itembed, 7
Ν
norm() (in module itembed), 10
normalize() (in module itembed), 10
P
pack_itemsets() (in module itembed), 7
prune_itemsets() (in module itembed), 7
S
softmax() (in module itembed), 10
SupervisedTask (class in itembed), 9
Т
```

Task (class in itembed), 8