itembed Release 0.5.0

Johan Berdat

CONTENTS

1 Getting Started 1
2 Mathematical Background 3
2.1 The Pair Paradygm 3
2.2 Why Negative Sampling? 3
2.3 Additional Considerations 5
2.4 References 6
3 Developer Interface 7
3.1 Preprocessing Tools 7
3.2 Tasks 8
3.3 Training Tools 10
3.4 Postprocessing Tools 10
3.5 Low-Level Optimization Methods 11
Bibliography 15
Python Module Index 17
Index 19

GETTING STARTED

MATHEMATICAL BACKGROUND

[WFC+17], [BK16]...

2.1 The Pair Paradygm

Item pairs are at the center of [MCCD13] and its derivatives. Instead of processing a whole sequence, only two items are considered at a single step. This section discusses how to select them and what they represent.

2.1.1 Input-Output

The most straightforward way to define an item pair is in the supervised case. The left-hand side is the input (a.k.a. feature item) and the right-hand side is the output (a.k.a. label item).

2.1.2 Skip-Gram

2.2 Why Negative Sampling?

2.2.1 Softmax Formulation

Let (a, b) a pair of items, where $a \in A$ is the source and $b \in B$ the target. The actual meaning depends on the use case, as discussed above.
The conditional probability of observing b given a is defined by a softmax on all possibilities, as it is a regular multiclass task:

$$
P(b \mid a ; \mathbf{u}, \mathbf{v})=\frac{e^{\mathbf{u}_{a}^{T} \mathbf{v}_{b}}}{\sum_{b^{\prime}} e^{\mathbf{u}_{a}^{T} \mathbf{v}_{b^{\prime}}}}
$$

The log-likelihood is therefore defined as:

$$
\begin{gathered}
\mathcal{L}(a, b ; \mathbf{u}, \mathbf{v})=-\log P(b \mid a ; \mathbf{u}, \mathbf{v})=-\mathbf{u}_{a}^{T} \mathbf{v}_{b}+\log \sum_{b^{\prime}} e^{\mathbf{u}_{a}^{T} \mathbf{v}_{b^{\prime}}} \\
\frac{\partial}{\partial \mathbf{u}_{a}} \mathcal{L}(a, b ; \mathbf{u}, \mathbf{v})=-\mathbf{v}_{b}+\sum_{b^{\prime}} P\left(b^{\prime} \mid a ; \mathbf{u}, \mathbf{v}\right) \mathbf{v}_{b^{\prime}}
\end{gathered}
$$

However, this implies a summation over every $b^{\prime} \in B$, which is computationally expensive for large vocabularies.

2.2.2 Noise Contrastive Estimation Formulation

Noise Contrastive Estimation (Gutmann and Hyvärinen [GH10]) is proposed by Mnih and Teh [MT12] as a stable sampling method, to reduce the cost induced by softmax computation. In a nutshell, the model is trained to distinguish observed (positive) samples from random noise. Logistic regression is applied to minimize the negative log-likelihood, i.e. cross-entropy of our training example against the k noise samples:

$$
\mathcal{L}(a, b)=-\log P(y=1 \mid a, b)+k \mathbb{E}_{b^{\prime} \sim Q}[-\log P(y=0 \mid a, b)]
$$

To avoid computating the expectation on the whole vocabulary, a Monte Carlo approximation is applied. $B^{*} \subseteq B$, with $\left|B^{*}\right|=k$, is therefore the set of random samples used to estimate it:

$$
\mathcal{L}(a, b)=-\log P(y=1 \mid a, b)-k \sum_{b^{\prime} \in B^{*} \subseteq B} \log P\left(y=0 \mid a, b^{\prime}\right)
$$

We are effectively generating samples from two different distributions: positive pairs are sampled from the empirical training set, while negative pairs come from the noise distribution Q.

$$
P(y, b \mid a)=\frac{1}{k+1} P(b \mid a)+\frac{k}{k+1} Q(b)
$$

Hence, the probability that a sample came from the training distribution:

$$
\begin{aligned}
& P(y=1 \mid a, b)=\frac{P(b \mid a)}{P(b \mid a)+k Q(b)} \\
& P(y=0 \mid a, b)=1-P(y=1 \mid a, b)
\end{aligned}
$$

However, $P(b \mid a)$ is still defined as a softmax:

$$
P(b \mid a ; \mathbf{u}, \mathbf{v})=\frac{e^{\mathbf{u}_{a}^{T} \mathbf{v}_{b}}}{\sum_{b^{\prime}} e^{\mathbf{u}_{a}^{T} \mathbf{v}_{b^{\prime}}}}
$$

Both Mnih and Teh [MT12] and Vaswani et al. [VZFC13] arbitrarily set the denominator to 1. The underlying idea is that, instead of explicitly computing this value, it could be defined as a trainable parameter. Zoph et al. [ZVMK16] actually report that even when trained, it stays close to 1 with a low variance.

Hence:

$$
P(b \mid a ; \mathbf{u}, \mathbf{v})=e^{\mathbf{u}_{a}^{T} \mathbf{v}_{b}}
$$

The negative log-likelihood can then be computed as usual:

$$
\mathcal{L}(a, b ; \mathbf{u}, \mathbf{v})=-\log P(a, b ; \mathbf{u}, \mathbf{v})
$$

Mnih and Teh [MT12] report that using $k=25$ is sufficient to match the performance of the regular softmax.

2.2.3 Negative Sampling Formulation

Negative Sampling, popularised by Mikolov et al. [MSC+13], can be seen as an approximation of NCE. As defined previously, NCE is based on the following:

$$
P(y=1 \mid a, b ; \mathbf{u}, \mathbf{v})=\frac{e^{\mathbf{u}_{a}^{T} \mathbf{v}_{b}}}{e^{\mathbf{u}_{a}^{T} \mathbf{v}_{b}}+k Q(b)}
$$

Negative Sampling simplifies this computation by replacing $k Q(b)$ by 1 . Note that $k Q(b)=1$ is true when $B^{*}=B$ and Q is the uniform distribution.

$$
P(y=1 \mid a, b ; \mathbf{u}, \mathbf{v})=\frac{e^{\mathbf{u}_{a}^{T} \mathbf{v}_{b}}}{e^{\mathbf{u}_{a}^{T} \mathbf{v}_{b}}+1}=\sigma\left(\mathbf{u}_{a}^{T} \mathbf{v}_{b}\right)
$$

Hence:

$$
\begin{gathered}
P(a, b ; \mathbf{u}, \mathbf{v})=\sigma\left(\mathbf{u}_{a}^{T} \mathbf{v}_{b}\right) \prod_{b^{\prime} \in B^{*} \subseteq B}\left(1-\sigma\left(\mathbf{u}_{a}^{T} \mathbf{v}_{b}\right)\right) \\
\mathcal{L}(a, b ; \mathbf{u}, \mathbf{v})=-\log \sigma\left(\mathbf{u}_{a}^{T} \mathbf{v}_{b}\right)-\sum_{b^{\prime} \in B^{*} \subseteq B} \log \left(1-\sigma\left(\mathbf{u}_{a}^{T} \mathbf{v}_{b}^{\prime}\right)\right)
\end{gathered}
$$

For more details, see Goldberg and Levy's notes [GL14].
To compute the gradient, let us rewrite the loss as:

$$
\mathcal{L}(a, b ; \mathbf{u}, \mathbf{v})=-\ell_{a, b, 1}-\sum_{b^{\prime} \in B^{*} \subseteq B} \ell_{a, b^{\prime}, 0}
$$

where

$$
\ell_{a, b, y}=\log \sigma\left(y-\mathbf{u}_{a}^{T} \mathbf{v}_{b}\right)
$$

Then:

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{u}_{a}} \ell(a, b, y) & =\frac{1}{y-\sigma\left(\mathbf{u}_{a}^{T} \mathbf{v}_{b}\right)}\left(-\sigma\left(\mathbf{u}_{a}^{T} \mathbf{v}_{b}\right)\left(1-\sigma\left(\mathbf{u}_{a}^{T} \mathbf{v}_{b}\right)\right)\right) \mathbf{v}_{b} \\
& =\left(y-\sigma\left(\mathbf{u}_{a}^{T} \mathbf{v}_{b}\right)\right) \mathbf{v}_{b}
\end{aligned}
$$

And similarly:

$$
\frac{\partial}{\partial \mathbf{v}_{b}} \ell(a, b, y)=\left(y-\sigma\left(\mathbf{u}_{a}^{T} \mathbf{v}_{b}\right)\right) \mathbf{u}_{a}
$$

2.3 Additional Considerations

2.3.1 Normalization

By setting the denominator to 1, as proposed above, the model essentially learns to self-normalize. However, Devlin et al. [DZH+14] suggest to add a squared error penalty to enforce the equivalence. Andreas and Klein [AK15] even suggest that it should even be sufficient to only normalize a fraction of the training examples and still obtain approximate self-normalising behaviour.

2.3.2 Item distribution balancing

In word2vec, Mikolov et al. [MSC+13] use a subsampling approach to reduce the impact of frequent words. Each word has a probability

$$
P\left(w_{i}\right)=1-\sqrt{\left(\frac{t}{f\left(w_{i}\right)}\right)}
$$

of being discarded, where $f\left(w_{i}\right)$ is its frequency and t a chosen threshold, typically around 10^{-5}.

2.4 References

DEVELOPER INTERFACE

This part of the documentation covers the public interface of itembed.

3.1 Preprocessing Tools

A few helpers are provided to clean the data and convert to the expected format.
itembed.index_batch_stream(num_index, batch_size)
Indices generator.
itembed.pack_itemsets(itemsets, *, min_count=1, min_length=1)
Convert itemset collection to packed indices.

Parameters

- itemsets (list of list of object) - List of sets of hashable objects.
- min_count (int, optional) - Minimal frequency count to be kept.
- min_length (int, optional) - Minimal itemset length.

Returns

- labels (list of object) - Mapping from indices to labels.
- indices (int32, num_item) - Packed index array.
- offsets (int32, num_itemset +1) - Itemsets offsets in packed array.

Example

```
>>> itemsets = [
... ["apple"],
... ["apple", "sugar", "flour"],
... ["pear", "sugar", "flour", "butter"],
.." ["apple", "pear", "sugar", "butter", "cinnamon"],
... ["salt", "flour", "oil"],
...]
>>> pack_itemsets(itemsets, min_length=2)
(['apple', 'sugar', 'flour', 'pear', 'butter', 'cinnamon', 'salt', 'oil'],
array([0, 1, 2, 3, 1, 2, 4, 0, 3, 1, 4, 5, 6, 2, 7]),
array([ 0, 3, 7, 12, 15]))
```

itembed.prune_itemsets(indices, offsets, *, mask=None, min_length=None)
Filter packed indices.
Either an explicit mask or a length threshold must be defined.

Parameters

- indices (int 32 , num_item) - Packed index array.
- offsets (int32, num_itemset + 1) - Itemsets offsets in packed array.
- mask (bool, num_itemset) - Boolean mask.
- min_length (int) - Minimum length, inclusive.

Returns

- indices (int32, num_item) - Packed index array.
- offsets (int32, num_itemset +1) - Itemsets offsets in packed array.

Example

```
>>> indices = np.array([0, 0, 1, 0, 1, 2, 0, 1, 2, 3])
>>> offsets = np.array([0, 1, 3, 6, 10])
>>> mask = np.array([True, True, False, True])
>>> prune_itemsets(indices, offsets, mask=mask, min_length=2)
(array([0, 1, 0, 1, 2, 3]), array([0, 2, 6]))
```


3.2 Tasks

Tasks are high-level building blocks used to define an optimization problem.
class itembed.Task(learning_rate_scale)
Abstract training task.
do_batch (learning_rate)
Apply training step.
class itembed.UnsupervisedTask(items, offsets, syn0, syn1, *, weights=None, num_negative=5, learning_rate_scale $=1.0$, batch_size=64)
Unsupervised training task.

See also:

```
do_unsupervised_steps()
```


Parameters

- items (int 32 , num_item)-Itemsets, concatenated.
- offsets (int32, num_itemset + 1) - Boundaries in packed items.
- indices (int 32, num_step) - Subset of offsets to consider.
- syn0 (float32, num_label x num_dimension) - First set of embeddings.
- syn1 (float32, num_label x num_dimension) - Second set of embeddings.
- weights (float32, num_item, optional)- Item weights, concatenated.
- num_negative (int32, optional) - Number of negative samples.
- learning_rate_scale (float32, optional) - Learning rate multiplier.
- batch_size (int32, optional) - Batch size.
do_batch (learning_rate)
Apply training step.
class itembed.SupervisedTask(left_items, left_offsets, right_items, right_offsets, left_syn, right_syn, *, left_weights=None, right_weights=None, num_negative $=5$, learning_rate_scale $=1.0$, batch_size $=64$)
Supervised training task.

See also:

```
do_supervised_steps()
```


Parameters

- left_items (int 32 , num_left_item) - Itemsets, concatenated.
- left_offsets (int32, num_itemset + 1) - Boundaries in packed items.
- right_items (int32, num_right_item) - Itemsets, concatenated.
- right_offsets (int32, num_itemset + 1) - Boundaries in packed items.
- left_syn (float32, num_left_label x num_dimension) - Feature embeddings.
- right_syn (float32, num_right_label x num_dimension) - Label embeddings.
- left_weights (float32, num_left_item, optional) - Item weights, concatenated.
- right_weights (float 32 , num_right_item, optional) - Item weights, concatenated.
- num_negative (int32, optional) - Number of negative samples.
- learning_rate_scale (float32, optional) - Learning rate multiplier.
- batch_size (int32, optional) - Batch size.
do_batch (learning_rate)
Apply training step.
class itembed.CompoundTask(*tasks, learning_rate_scale=1.0)
Group multiple sub-tasks together.

Parameters

- *tasks (list of Task) - Collection of tasks to train jointly.
- learning_rate_scale (float32, optional) - Learning rate multiplier.
do_batch (learning_rate)
Apply training step.

3.3 Training Tools

Embeddings initialization and training loop helpers:
itembed.initialize_syn(num_label, num_dimension, method='uniform')
Allocate and initialize embedding set.

Parameters

- num_label (int32) - Number of labels.
- num_dimension (int32) - Size of embeddings.
- method (\{"uniform", "zero"\}, optional) - Initialization method.

Returns syn - Embedding set.
Return type float32, num_label x num_dimension
itembed.train(task, *, num_epoch $=10$, initial_learning_rate=0.025, final_learning_rate=0.0) Train loop.
Learning rate decreases linearly, down to zero.
Keyboard interruptions are silently captured, which interrupt the training process.
A progress bar is shown, using tqdm.

Parameters

- task (Task) - Top-level task to train.
- num_epoch (int) - Number of passes across the whole task.
- initial_learning_rate (float) - Maximum learning rate (inclusive).
- final_learning_rate (float) - Minimum learning rate (exclusive).

3.4 Postprocessing Tools

Once embeddings are trained, some methods are provided to normalize and use them.
itembed. softmax (x)
Compute softmax.
itembed.norm (x)
L_{2} norm.
itembed.normalize(x)
L_{2} normalization.

3.5 Low-Level Optimization Methods

At its core, itembed is a set of optimized methods.
itembed.expit (x)
Compute logistic activation.
itembed.do_step(left, right, syn_left, syn_right, tmp_syn, num_negative, learning_rate)
Apply a single training step.
Parameters

- left (int32) - Left-hand item.
- right (int32) - Right-hand item.
- syn_left (float32, num_left x num_dimension) - Left-hand embeddings.
- syn_right (float32, num_right x num_dimension) - Right-hand embeddings.
- tmp_syn (float32, num_dimension) - Internal buffer (allocated only once, for performance).
- num_negative (int32) - Number of negative samples.
- learning_rate (float 32) - Learning rate.
itembed.do_supervised_steps(left_itemset, right_itemset, left_weights, right_weights, left_syn, right_syn, tmp_syn, num_negative, learning_rate)
Apply steps from two itemsets.
This is used in a supervised setting, where left-hand items are features and right-hand items are labels.

Parameters

- left_itemset (int32, left_length) - Feature items.
- right_itemset (int32, right_length)-Label items.
- left_weights (float32, left_length) - Feature item weights.
- right_weights (float32, right_length) - Label item weights.
- left_syn (float32, num_left_label x num_dimension) - Feature embeddings.
- right_syn (float32, num_right_label x num_dimension) - Label embeddings.
- tmp_syn (float32, num_dimension) - Internal buffer (allocated only once, for performance).
- num_negative (int32) - Number of negative samples.
- learning_rate (float32) - Learning rate.
itembed.do_unsupervised_steps (itemset, weights, syn0, syn1, tmp_syn, num_negative, learning_rate)
Apply steps from a single itemset.
This is used in an unsupervised setting, where co-occurrence is used as a knowledge source. It follows the skip-gram method, as introduced by Mikolov et al.

For each item, a single random neighbor is sampled to define a pair. This means that only a subset of possible pairs is considered. The reason is twofold: training stays in linear complexity w.r.t. itemset lengths and large itemsets do not dominate smaller ones.

Itemset must have at least 2 items. Length is not checked, for efficiency.

Parameters

- itemset (int 32, length)- Items.
- weights (float 32, length)-Item weights.
- syn0 (float32, num_label x num_dimension) - First set of embeddings.
- syn1 (float32, num_label x num_dimension) - Second set of embeddings.
- tmp_syn (float32, num_dimension) - Internal buffer (allocated only once, for performance).
- num_negative (int32) - Number of negative samples.
- learning_rate (float32) - Learning rate.
itembed.do_supervised_batch (left_items, left_weights, left_offsets, left_indices, right_items, right_weights, right_offsets, right_indices, left_syn, right_syn, tmp_syn, num_negative, learning_rate)
Apply supervised steps from multiple itemsets.
See also:
do_supervised_steps()

Parameters

- left_items (int 32, num_left_item)-Itemsets, concatenated.
- left_weights (float 32 , num_left_item)-Item weights, concatenated.
- left_offsets (int32, num_itemset + 1)-Boundaries in packed items.
- left_indices (int32, num_step) - Subset of offsets to consider.
- right_items (int32, num_right_item) - Itemsets, concatenated.
- right_weights (float 32 , num_right_item) - Item weights, concatenated.
- right_offsets (int32, num_itemset +1)-Boundaries in packed items.
- right_indices (int 32 , num_step) - Subset of offsets to consider.
- left_syn (float 32, num_left_label x num_dimension) - Feature embeddings.
- right_syn (float32, num_right_label x num_dimension) - Label embeddings.
- tmp_syn (float32, num_dimension) - Internal buffer (allocated only once, for performance).
- num_negative (int32) - Number of negative samples.
- learning_rate (float 32) - Learning rate.
itembed.do_unsupervised_batch(items, weights, offsets, indices, syn0, syn1, tmp_syn, num_negative, learning_rate)
Apply unsupervised steps from multiple itemsets.
See also:
do_unsupervised_steps()

Parameters

- items (int 32, num_item)-Itemsets, concatenated.
- weights (float 32, num_item) - Item weights, concatenated.
- offsets (int32, num_itemset + 1) - Boundaries in packed items.
- indices (int 32, num_step) - Subset of offsets to consider.
- syn0 (float32, num_label x num_dimension) - First set of embeddings.
- syn1 (float32, num_label x num_dimension) - Second set of embeddings.
- tmp_syn (float32, num_dimension) - Internal buffer (allocated only once, for performance).
- num_negative (int32) - Number of negative samples.
- learning_rate (float32) - Learning rate.

BIBLIOGRAPHY

[AK15] Jacob Andreas and Dan Klein. When and why are log-linear models self-normalizing? In Rada Mihalcea, Joyce Yue Chai, and Anoop Sarkar, editors, HLT-NAACL, 244-249. The Association for Computational Linguistics, 2015. URL: http://dblp.uni-trier.de/db/conf/naacl/naacl2015.html\#AndreasK15.
[BK16] Oren Barkan and Noam Koenigstein. Item2vec: neural item embedding for collaborative filtering. 2016. cite arxiv:1603.04259. URL: http://arxiv.org/abs/1603.04259.
[DZH+14] Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas Lamar, Richard Schwartz, and John Makhoul. Fast and robust neural network joint models for statistical machine translation. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 1370-1380. Baltimore, Maryland, June 2014. Association for Computational Linguistics. URL: http://www.aclweb. org/anthology/P14-1129.
[GL14] Yoav Goldberg and Omer Levy. Word2vec explained: deriving mikolov et al.'s negative-sampling wordembedding method. 2014. cite arxiv:1402.3722. URL: http://arxiv.org/abs/1402.3722.
[GH10] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: a new estimation principle for unnormalized statistical models. In Yee Whye Teh and D. Mike Titterington, editors, AISTATS, volume 9 of JMLR Proceedings, 297-304. JMLR.org, 2010. URL: http://dblp.uni-trier.de/db/journals/jmlr/jmlrp9. html\#GutmannH10.
[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. CoRR, 2013. URL: http://dblp.uni-trier.de/db/journals/corr/corr1301.html\#abs-1301-3781.
[MSC+13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of words and phrases and their compositionality. In C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 26, pages 3111-3119. 2013. URL: http://papers.nips.cc/paper/ 5021-distributed-representations-of-words-and-phrases-and-their-compositionality.
[MT12] Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training neural probabilistic language models. In ICML. icml.cc / Omnipress, 2012. URL: http://dblp.uni-trier.de/db/conf/icml/icml2012.html\# MnihT12.
[VZFC13] Ashish Vaswani, Yinggong Zhao, Victoria Fossum, and David Chiang. Decoding with large-scale neural language models improves translation. In $E M N L P, 1387-1392$. ACL, 2013. URL: http://dblp.uni-trier.de/ db/conf/emnlp/emnlp2013.html\#VaswaniZFC13.
[WFC+17] Ledell Wu, Adam Fisch, Sumit Chopra, Keith Adams, Antoine Bordes, and Jason Weston. Starspace: embed all the things! 2017. cite arxiv:1709.03856. URL: http://arxiv.org/abs/1709.03856.
[ZVMK16] Barret Zoph, Ashish Vaswani, Jonathan May, and Kevin Knight. Simple, fast noise-contrastive estimation for large rnn vocabularies. In Kevin Knight, Ani Nenkova, and Owen Rambow, editors, HLT-NAACL, 1217-1222. The Association for Computational Linguistics, 2016. URL: http://dblp.uni-trier.de/db/conf/ naacl/naacl2016.html\#ZophVMK16.

PYTHON MODULE INDEX

i

itembed, 7

C

CompoundTask (class in itembed), 9

D

do_batch() (itembed.CompoundTask method), 9
do_batch() (itembed.SupervisedTask method), 9
do_batch() (itembed.Task method), 8 do_batch() (itembed.UnsupervisedTask method), 9 do_step() (in module itembed), 11 do_supervised_batch() (in module itembed), 12 do_supervised_steps() (in module itembed), 11 do_unsupervised_batch() (in module itembed), 12
do_unsupervised_steps() (in module itembed), 11

E

expit() (in module itembed), 11

|

index_batch_stream() (in module itembed), 7
initialize_syn() (in module itembed), 10
itembed
module, 7
M
module
itembed, 7

N

norm() (in module itembed), 10
normalize() (in module itembed), 10

P

pack_itemsets() (in module itembed), 7
prune_itemsets() (in module itembed), 7

S

softmax() (in module itembed), 10
SupervisedTask (class in itembed), 9

T

Task (class in itembed), 8

train() (in module itembed), 10

U

UnsupervisedTask (class in itembed), 8

